Erbium emission in MOS light emitting devices: from energy transfer to direct impact excitation.
نویسندگان
چکیده
The electroluminescence (EL) at 1.54 μm of metal–oxide–semiconductor (MOS) devices withEr3C ions embedded in the silicon-rich silicon oxide (SRSO) layer has been investigated under different polarization conditions and compared with that of erbium doped SiO2 layers. EL time-resolved measurements allowed us to distinguish between two different excitation mechanisms responsible for the Er3C emission under an alternate pulsed voltage signal (APV). Energy transfer from silicon nanoclusters (Si-ncs) to Er3C is clearly observed at low-field APV excitation. We demonstrate that sequential electron and hole injection at the edges of the pulses creates excited states in Si-ncs which upon recombination transfer their energy to Er3C ions. On the contrary, direct impact excitation of Er3C by hot injected carriers starts at the Fowler–Nordheim injection threshold (above 5 MV cm(-1)) and dominates for high-field APV excitation.
منابع مشابه
Energy Transfer from Silicon Nanocrystals to Er Ions Embedded in Silicon Oxide Matrix
Silicon (Si) based light emitting devices have drawn much attention for the integration of electronic and photonics. Si nanostructures (amorphous clusters or crystals) have been recognized as good candidates for effective light emitting devices (Bulutay, 2007; Seino et al., 2009; Takagahara & Takeda, 2007; Wolkin et al., 1999). However, photons emitted by Si nanostructures can be reabsorbed by ...
متن کاملVisible and 1.54 μm Emission From Amorphous Silicon Nitride Films by Reactive Cosputtering
In this paper, we present our main results on the structural and optical properties of light-emitting amorphous silicon nitride (SiNx) films fabricated by reactive magnetron cosputtering. In particular, we discuss the origin of the visible emission in amorphous silicon nitride films and investigate the optical emission properties of Erbium-doped amorphous silicon nitride (Er:SiNx). The mechanis...
متن کاملErbium-doped silicon nanocrystals in silicon/silicon nitride superlattice structures: Light emission and energy transfer
In this paper, we discuss optical emission, energy transfer and electroluminescence from a superlattice structure containing small ( 2nm diameter) amorphous silicon (Si) clusters coupled to erbium (Er) ions. The superlattice structure is fabricated by direct co-sputtering of thin ( 3–5nm) Er-doped siliconrich nitride/Si (Er:SRN/Si) layers subsequently annealed at different temperatures in order...
متن کاملOn the origin of the redshift in the emission wavelength of InGaN/GaN blue light emitting diodes grown with a higher temperature interlayer
Related Articles Multilayered graphene anode for blue phosphorescent organic light emitting diodes Appl. Phys. Lett. 100, 133304 (2012) Multilayered graphene anode for blue phosphorescent organic light emitting diodes APL: Org. Electron. Photonics 5, 82 (2012) Electroluminescence from strained germanium membranes and implications for an efficient Si-compatible laser Appl. Phys. Lett. 100, 13111...
متن کاملLaser-diode-excited intense luminescence and green-upconversion in erbium-doped bismuth-germanate-lead glasses.
We investigate the spectroscopic properties of the 1.5-microm emission from the (4)I(13/2)-->(4)I(15/2) transition of Er(3+) ions in bismuth-germanate-lead glasses for applications in broadband fiber amplifiers. The emission peak locates at 1532nm with a full width at half-maximum (FWHM) of approximately 65nm. The measured lifetime and the calculated emission cross-section of this transition ar...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Nanotechnology
دوره 23 12 شماره
صفحات -
تاریخ انتشار 2012